Bypass Economizer
Supplemental Manual for Options

HE-Series Indoor

Bypass Economizer shown
WARNING

Arc flash and electric shock hazard. Disconnect all electric power supplies and wear protective equipment per NFPA 70E before working within electric enclosure. Lock and tag the disconnect switch or breaker to prevent accidental re-connection of electric power while performing service or maintenance operations. Failure to comply can cause serious injury or death. Customer must provide earth ground to unit, per NEC, CEC and local codes, as applicable. Before proceeding with installation, read all instructions, verify that all parts are included and check the nameplate to verify the voltage matches available utility power. The line side of the disconnect switch on the front of the unit contains live high-voltage. The only way to ensure there is NO voltage inside the unit is to install and open all local and remote disconnect switches and then verify that power is off with a voltmeter. Refer to unit electrical schematic. Follow all local codes.

CAUTION

Risk of damage to the enthalpic core. Improper maintenance procedures may lead to damage of the enthalpic core.

When performing maintenance of the ERV or the core bypass, organic solvents are not to be used within the enclosure. In addition, high pressure air is not to be applied to the enthalpic core.

CAUTION

Risk of damage to the Core Bypass controls.

Whenever a control device is connected to or disconnected from the controls circuits, the power supply to the ERV must be disconnected. Lock and tag the disconnect switch or circuit breaker to prevent accidental reconnection of electric power.

IMPORTANT

This equipment is only for use in completed structures. Use of this equipment prior to completion of building construction will void the warranty. Do not use this equipment for temporary conditioning of the air.

IMPORTANT

This equipment is to be installed by following Industry Best Practices and all applicable codes. Any damage to components, assemblies, subassemblies or the cabinet which is caused by improper installation practices will void the warranty.
UNIT INFORMATION

Record information as shown below. A permanent record should be maintained so that damper stop and controls settings can be verified at a later date. In the unlikely event that factory assistance is ever required, this information will also be needed.

Locate the RenewAire unit label, to be found on either the left or right side of the unit. Record the following:

ERV Option Code: [Redacted]
ERV Serial Number: [Redacted]
ERV SO #: [Redacted]

NOTE: This page and the following page are to be completed by the installing contractor. The completed document is to be turned over to the owner after start-up.

UNIT INFORMATION

TYPICAL UNIT LABEL (FOUND ON EITHER LEFT SIDE OR RIGHT SIDE OF THE UNIT)

Type of Bypass Controls: (check one) [] Dry Bulb [] Enthalpic

If controls are dry bulb, record the following:

Low Limit (setting at time of start-up) [] (Low Limit Factory Setting: 53˚)

Show any changes to Low Limit setting (include date and reason for change)

[]

High Limit (setting at time of start-up) [] (High Limit Factory Setting: 75˚)

Show any changes to High Limit setting (include date and reason for change)

[]

If controls are enthalpic, record the following:

Low Limit (setting at time of start-up) [] (Low Limit Factory Setting: 53˚)

Show any changes to Low Limit setting (include date and reason for change)

[]
RENEWAIRE ERV OPTION CODE

There are seven different models of RenewAire ERVs that can be ordered with the Bypass Economizer Option. Every ERV has a unit label that shows the exact model with its options, as ordered. In the ERV Option Code, units with the bypass economizer option will have a number in place of a letter for character 18. The individual number indicates which type of bypass controls are installed and whether any isolation dampers are installed. See Page 3 for instructions on how to locate the ERV Option Code on the unit label.

Digit 18: Flow Control*

<table>
<thead>
<tr>
<th>Digit 18</th>
<th>Flow Control*</th>
</tr>
</thead>
<tbody>
<tr>
<td>"-"</td>
<td>No Isolation Dampers (with no Bypass)</td>
</tr>
<tr>
<td>"D"</td>
<td>Motorized Damper both Airstreams (with no Bypass)</td>
</tr>
<tr>
<td>"E"</td>
<td>Motorized Damper EA or RA Airstream (with no Bypass)</td>
</tr>
<tr>
<td>"F"</td>
<td>Motorized Damper FA or OA Airstream (with no Bypass)</td>
</tr>
<tr>
<td>"0"</td>
<td>Drybulb Bypass Dampers only (no Isolation Dampers)</td>
</tr>
<tr>
<td>"1"</td>
<td>Drybulb Bypass with Motorized Dampers all Airstreams</td>
</tr>
<tr>
<td>"4"</td>
<td>Drybulb Bypass with Motorized Damper OA Airstream</td>
</tr>
<tr>
<td>"5"</td>
<td>Enthalpy Bypass Dampers only (no Isolation Dampers)</td>
</tr>
<tr>
<td>"6"</td>
<td>Enthalpy Bypass with Motorized Dampers all Airstreams</td>
</tr>
<tr>
<td>"9"</td>
<td>Enthalpy Bypass with Motorized Damper OA Airstream</td>
</tr>
</tbody>
</table>

Restrictions:
- Face damper also acts as isolation damper in EA or RA Airstream.
- Bypass not available in EV450.
- Bypass only available in indoor units.
Table of Contents

1.0 Overview

1.1 Description

1.1.1 Dry Bulb Control

1.1.2 Enthalpy Control

1.1.3 Dampers

2.0 Layout Recommendations

3.0 Performance Data

4.0 Component Description

4.1 Dry Bulb Controller

4.2 Thermistor

4.3 Low Limit Dry Bulb Controller

4.4 Outdoor Air Enthalpy Controller

4.5 Return Air Enthalpy Transmitter

4.6 Round Damper

4.7 Rectangular Damper

4.8 Damper Actuators

4.8.1 Belimo TFB24-S Damper Actuator

4.8.2 Belimo LF-24S Damper Actuator

4.8.3 Ruskin RUS-S24-S Damper Actuator

5.0 Installation

5.1 Dry Bulb Control Wiring Schematic

5.2 Enthalpy Control Wiring Schematic

5.3 Model HE1XIN Dimension Drawings

5.4 Model HE1.5XIN Dimension Drawings

5.5 Model HE2XIN Dimension Drawings

5.6 Model HE3XIN Dimension Drawings

5.7 Model HE4XIN Dimension Drawings

5.8 Model HE6XIN Dimension Drawing

5.9 Model HE8XIN Dimension Drawing

6.0 Operation

6.1 Unit Start-Up Damper Adjustment

6.1.1 Tools Required for Damper Adjustment

6.1.2 Damper Adjustment Procedure

6.2 Unit Start-Up Controls Adjustment

6.2.1 Dry Bulb Control Settings

6.2.2 Enthalpy Control Settings

7.0 Maintenance

8.0 Troubleshooting

8.1 Sequence of Operation (SOO)

9.0 Factory Assistance

10.0 Warranty
TABLE OF ILLUSTRATIONS

Figure 1.1.0 Dry Bulb Controller ... 8
Figure 1.1.1 Low Limit Dry Bulb Controller ... 8
Figure 1.1.2 Outdoor Air Enthalpy Controller ... 8
Figure 1.1.3 Return Air Enthalpy Transmitter .. 8
Figure 1.1.4 Typical ERV Without Core Bypass .. 9
Figure 1.1.5 Typical ERV With Core Bypass ... 9
Figure 2.0.0 HE1XINH Duct Layout ... 10
Figure 2.0.1 HE1.5XINH Duct Layout .. 10
Figure 2.0.2 HE2X-4XINH Duct Layout ... 11
Figure 2.0.3 HE2X-4XINV Duct Layout .. 11
Figure 2.0.4 HE6XIN & HE8XIN Duct Layout ... 11
Figure 3.0.0 Psychometric Chart (Dry Bulb Control) 12
Figure 3.0.1 Psychometric Chart (Enthalpy Control) 13
Figure 4.8.0 Chart of Damper Actuators by RenewAire Model 16
Figure 4.8.1 Bypass Actuator ... 16
Figure 4.8.2 Face Actuator ... 16
Figure 5.0.0 Table of Installed Features by Model 17
Figure 5.3.0 HE1XINH Dimension Drawing (Horizontal Airflow Orientation) 20
Figure 5.3.1 HE1XINV Dimension Drawing (Vertical Airflow Orientation) 21
Figure 5.4.0 HE1.5XINH Dimension Drawing (Horizontal Airflow Orientation) 22
Figure 5.4.1 HE1.5XINV Dimension Drawing (Vertical Airflow Orientation) 23
Figure 5.5.0 HE2XINH Dimension Drawing (Horizontal Airflow Orientation) 24
Figure 5.5.1 HE2XINV Dimension Drawing (Vertical Airflow Orientation) 25
Figure 5.6.0 HE3XINH Dimension Drawing (Horizontal Airflow Orientation) 26
Figure 5.6.1 HE3XINV Dimension Drawing (Vertical Airflow Orientation) 27
Figure 5.7.0 HE4XINH Dimension Drawing (Horizontal Airflow Orientation) 28
Figure 5.7.1 HE4XINV Dimension Drawing (Vertical Airflow Orientation) 29
Figure 5.8.0 HE6XIN Dimension Drawing .. 30
Figure 5.9.0 HE8XIN Dimension Drawing .. 31
Figure 6.1.0 Typical Damper Actuator Stop Adjustment 32

TABLE OF WIRING SCHEMATICS

Figure 4.1.0 Dry Bulb Controller Partial Wiring Schematic 14
Figure 4.5.0 Enthalpy Controller Partial Wiring Schematic 15
Figure 5.1.0 Dry Bulb Control Wiring Schematic 18
Figure 5.2.0 Enthalpy Control Wiring Schematic 19
1.0 OVERVIEW

1.1 DESCRIPTION

The ERV Bypass Economizer Option is a system that provides energy conservation during operation of an ERV. It accomplishes this by sensing ambient conditions and it then allows the RA air stream to move through an alternate duct, bypassing the ERV enthalpic core. This avoids unnecessary tempering of Supply Air.

The Bypass Economizer Option consists of one extra duct, two electrically actuated dampers and a control system. The bypass duct is field-supplied, fabricated and installed. See illustrations on pages 8 to 10. There are two variations of the control system, one of which uses a single outdoor air dry bulb controller and sensor, and the second variation which uses a Return Air enthalpy sensor in conjunction with an OA enthalpy controller and a dry bulb temperature controller.

1.1.1 DRY BULB CONTROL

The first control scheme has one thermistor to sense outdoor air temperature. The controller itself has two user-adjusted setting dials. The adjustable Low Limit setting is the temperature below which the ERV will operate without the core bypass (normal operation). The adjustable High Limit setting is the temperature above which the ERV will again go into normal operation without bypassing the core. In other words, there is a temperature band when the bypass should be actuated and these two settings determine the upper and lower limits of that temperature band.

1.1.2 ENTHALPY CONTROL

The second control scheme incorporates a more sophisticated level of bypass control. In addition to the dry bulb controller, the Core Bypass controller measures enthalpy in both the outdoor air and the return air streams to provide a more precise means of determining the upper and lower limit shutoff points. See Section 6.2 for detailed controls information.

1.1.3 DAMPERS

Dampers are used to move the RA air stream through the bypass duct instead of through the enthalpic core (bypass ON) and also to return the air stream to normal operation (bypass OFF). They are also used to balance the air stream during bypass operation by means of setting the stops on the actuators.
FIGURE 1.1.4 TYPICAL ERV WITHOUT CORE BYPASS

FIGURE 1.1.5 TYPICAL ERV WITH CORE BYPASS
2.0 LAYOUT RECOMMENDATIONS

NOTE: All duct installations must conform to SMACNA guidelines.

NOTE: All duct layouts depicted in this manual are suggested and may be modified to accommodate field conditions.
HE2XINH SUGGESTED DUCT LAYOUT - FRONT
ROUTING SAME FOR HE3XINH AND HE4XINH (DUCT SIZE CHANGES)

FIGURE 2.0.2 HE2X-4XINH DUCT LAYOUT

HE3XINV SUGGESTED DUCT LAYOUT - FRONT
ROUTING SAME FOR HE2XINV, HE3XINV (DUCT SIZE CHANGES)

FIGURE 2.0.3 HE2X-4XINV DUCT LAYOUT

HE6XIN & HE8XIN SUGGESTED DUCT LAYOUT - FRONT

FIGURE 2.0.4 HE6XIN & HE8XIN DUCT LAYOUT
3.0 PERFORMANCE DATA

Bypass Economizer Option

Chart by: HANDS DOWN SOFTWARE, www.handsdownsoftware.com

FIGURE 3.0.0 PSYCHOMETRIC CHART (DRY BULB CONTROL)
FIGURE 3.0.1 PSYCHOMETRIC CHART (ENTHALPY CONTROL)
4.0 COMPONENT DESCRIPTION

4.1 DRY BULB CONTROLLER

The Dry Bulb Controller is the simpler of the two control options. It is connected to a thermistor that senses the ambient temperature. There are two user-adjusted controls on the dry bulb controller, one for Low Limit Set Point and a second for High Limit Set Point. When the temperature sensed by the thermistor is greater than the Low Limit Set Point, it activates the bypass function. If the temperature drops below the Low Limit Set Point, the bypass function will switch OFF. If the temperature rises above the High Limit Set Point, the bypass function will again switch OFF.

The temperature band that falls between the Low Limit Set Point and the High Limit Set Point is the only time that the bypass function is switched ON.

4.2 THERMISTOR

The thermistor is used with all control schemes. It is factory-installed in the Energy Recovery Ventilator and operates on 24 VAC.
4.3 LOW LIMIT DRY BULB CONTROLLER

The low limit dry bulb controller is the device where the user sets the low limit setpoint. It is connected to both a thermistor and to the Outdoor Air Enthalpy Controller.

4.4 OUTDOOR AIR ENTHALPY CONTROLLER

The outdoor air enthalpy controller is connected to both the low limit dry bulb controller and the RA Enthalpy Transmitter. The outdoor air enthalpy controller compares its enthalpy reading to that of the return air enthalpy transmitter. If the outdoor air enthalpy is less than the return air enthalpy, and the outdoor air temperature is greater than the low limit setpoint, the bypass function will switch ON.

4.5 RETURN AIR ENTHALPY TRANSMITTER

The return air enthalpy transmitter is used in conjunction with the Outdoor Air Enthalpy Controller. The controller takes enthalpy readings from the transmitter to establish if ambient conditions fall within the user-defined setpoints to activate or deactivate the bypass. See Section 6.2 for more details.

![Schematic diagram](image)

FIGURE 4.5.0 ENTHALPY CONTROLLER PARTIAL WIRING SCHEMATIC

4.6 ROUND DAMPER

Round dampers are typically used in field-supplied and installed 12" round bypass ductwork. They are also used as face dampers for HE1XIN units. When the damper is shipped loose for field installation, the damper actuator is pre-assembled to the damper. Whenever a round damper is used, it operates in conjunction with a Belimo LF24-S Damper Actuator (if bypass damper) or Ruskin RUS-S24-S (if face damper). See chart of Damper Actuators on page 16.

4.7 RECTANGULAR DAMPER

Rectangular dampers are typically used as either face dampers or bypass dampers, depending on the field-supplied and installed bypass ductwork. Rectangular bypass dampers are always used in conjunction with Belimo Damper Actuators and rectangular face dampers are used in conjunction with Ruskin Damper Actuators, except for HE6XIN and HE8XIN units. See chart of Damper Actuators on page 16.

NOTE: All duct installations must conform to SMACNA guidelines.
4.8 DAMPER ACTUATORS

4.8.1 BELIMO TFB24-S DAMPER ACTUATOR
The Belimo TFB24-S actuators are used for all rectangular bypass dampers. For further information on this specific damper actuator, see the manufacturer’s website: https://www.belimo.us/shop/en_US/Actuators/Fail-Safe-Actuators/TFB24-S/p?code=TFB24-S

4.8.2 BELIMO LF-24S DAMPER ACTUATOR
The larger Belimo LF24-S damper actuators are typically used in 12” round bypass damper and for the 26” X 38” face dampers on the HE6XIN and HE8XIN ERVs. For further information on this specific damper, see the manufacturer’s website: https://www.belimo.us/shop/en_US/Actuators/Fail-Safe-Actuators/LF24-S-US/p?code=LF24-S+US

4.8.3 RUSKIN RUS-S24-S DAMPER ACTUATOR
The Ruskin RUS-S24-S damper actuators are used for most rectangular face dampers, and the 12” round face damper. For further information on this specific damper, see the manufacturer’s website: https://www.ruskin.com/model/rus-s24-s

<table>
<thead>
<tr>
<th>RenewAire ERV Model</th>
<th>Face Damper Actuator</th>
<th>Bypass Damper Actuator</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE1XIN</td>
<td>RUS-S24-S</td>
<td>LF24-S</td>
</tr>
<tr>
<td>HE1.5IN</td>
<td>RUS-S24-S</td>
<td>LF24-S</td>
</tr>
<tr>
<td>HE2XIN</td>
<td>RUS-S24-S</td>
<td>TFB24-S</td>
</tr>
<tr>
<td>HE3XIN</td>
<td>RUS-S24-S</td>
<td>TFB24-S</td>
</tr>
<tr>
<td>HE4XIN</td>
<td>RUS-S24-S</td>
<td>TFB24-S</td>
</tr>
<tr>
<td>HE6XIN</td>
<td>LF24-S</td>
<td>TFB24-S</td>
</tr>
<tr>
<td>HE8XIN</td>
<td>LF24-S</td>
<td>TFB24-S</td>
</tr>
</tbody>
</table>

FIGURE 4.8.0 CHART OF DAMPER ACTUATORS BY RENEWAIRE MODEL

NOTE: All bypass damper actuators have a built-in adjustable stop that is used for balancing air flow. See Section 6.0 of this manual for instructions on balancing the air flow at time of start-up.

FIGURE 4.8.1 BYPASS ACTUATOR

FIGURE 4.8.2 FACE ACTUATOR
5.0 INSTALLATION

For every RenewAire Energy Recovery Ventilator with Bypass Economizer Option, controls and dampers are installed at the factory, with the exception of those components shown below. Bypass ductwork is always supplied, fabricated and installed by others, in the field. For further information on the needed bypass ductwork, see the technical data sheet for the specific model, found in this manual in Section 5.3 through 5.9.

In those cases where a damper(s) must be field-installed, the damper is labeled either “FACE” or “BYPASS” and is already assembled to its actuator. The damper and actuator are then field-installed and the actuator is plugged into the factory-installed wiring harness using the plug located outside the unit.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HE1XIN</td>
<td>Yes</td>
<td>Yes</td>
<td>Shippped</td>
<td>Yes</td>
<td>12" Round</td>
</tr>
<tr>
<td>HE1.5IN</td>
<td>Yes</td>
<td>Yes</td>
<td>Shippped</td>
<td>Yes</td>
<td>12" Round</td>
</tr>
<tr>
<td>HE2XIN</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>16" X 16"</td>
</tr>
<tr>
<td>HE3XINH</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>30" X 16"</td>
</tr>
<tr>
<td>HE3XINV</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>36" X 14"</td>
</tr>
<tr>
<td>HE4XINH</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>34" X 16"</td>
</tr>
<tr>
<td>HE4XINV</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>42" X 14"</td>
</tr>
<tr>
<td>HE6XIN</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>38" X 16"</td>
</tr>
<tr>
<td>HE8XIN</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>38" X 16"</td>
</tr>
</tbody>
</table>

*Recommended duct sizes are based on ensuring that the pressure drop in the bypass duct is less than the pressure drop through the core. Equivalent duct sizes at the same pressure drop are acceptable.

FIGURE 5.0.0 TABLE OF INSTALLED FEATURES BY MODEL

1. Fabricate and install bypass ductwork in accordance with the guidelines shown for each model in this section of this manual.
2. Install dampers and damper actuators as required, shown on the chart above.
3. Balance the air flow through the bypass duct. See Section 6.1 of this manual. Adjust the damper actuator stops as needed.
4. Verify the settings on the dry bulb controllers. See Section 6.2 of this manual.
5. Complete the Unit Information on page 3 of this manual.
5.1 DRY BULB CONTROL WIRING SCHEMATIC

Dry bulb control is comprised of two dampers and their actuators, a dry bulb controller and a thermistor. The only user adjustments that are made to this system during normal operation are the LOW and HIGH settings on the controller.

![Dry Bulb Control Wiring Schematic](image-url)
5.2 ENTHALPY CONTROL WIRING SCHEMATIC

Enthalpy control is comprised of two dampers and their actuators, an enthalpy transmitter, an enthalpy controller that receives data from the enthalpy transmitter, and a low limit dry bulb controller. The only user adjustment that may be made to this system during normal use is the LOW LIMIT setpoint on the dry bulb controller.

FIGURE 5.2.0 ENTHALPY CONTROL WIRING SCHEMATIC
5.3 MODEL HE1XIN DIMENSION DRAWINGS
Specifications may be subject to change without notice.

AIRFLOW PERFORMANCE

Download specification at:

INDOOR UNIT SPECIFICATIONS

0.75 460 60 Three 1.15 2.6 15

0.75 277 60 Single 3.9 8.8 15

0.75 208-230 60 Single 4.5 10.1 15

HE

Single Phase

Three Phase

Watts is for the entire unit (2 motors).

INV

1X

970 CFM

925 CFM

0.0 0.25 0.5 0.75 0.9 1.25 1.5

motor

FLA

per

Amps

Min.

Cir.

1,158 Watts

1,375 Watts

925 CFM

925 CFM

Overcurrent Protection Device

Standard with Bypass Economizer

Qty. 2, 0.75 HP ea., Direct drive blower/standard Motor(s):

325 lbs.

30" L x 42" W x 71" H

Max. Shipping Dimensions & Weight (on pallet):

201-272 lbs., varies by option(s)

40 1/2" L x 23 3/4" W x 50 3/4" H

Unit Dimensions & Weight:

Total qty. 2, MERV 8: 20" x 20" x 2"

Cross-core differential pressure ports

24 VAC transformer/relay package

Standard Features:

AHRI 1060 Certified Core:

Static plate, heat and humidity transfer

Ventilation Type:

CORE PERFORMANCE

1,039 Watts

860 CFM

motor packages

Effectiveness (%)

30% 70%

External Static Pressure (Inches Water Column)

200 400 600 800 1000

At AHRI 1060 standard conditions. See all AHRI certified ratings at www.ahrinet.org.

Airflow (CFM)

928 Watts

1,160 Watts

795 CFM

856 Watts

1,090 Watts

750 CFM

750 CFM

EK series (1–175 kW);

Electric duct heater - RH series (1-11.5 kW);

Smoke Detector - duct mount (SD-D)

duct mount (IAQ-D)

wall mount (CO2-W), duct mount (CO2-D)

Carbon dioxide sensor/control -

Digital time clock - wall mount (TC7D-W),

Solid state speed control kit - 115V,

"- galvanized, paintable galvanneal

Wall cap 12

Motorized isolation damper - both airstreams

"(shipped loose)

Accessories:

Exterior paint - white, custom colors

both airstreams

Qty. 2, Factory mounted filter alarms -

OA, RA or both airstreams

Low-leakage motorized isolation dampers -

(by others).

1. UNLESS OTHERWISE SPECIFIED,
DIMENSIONS ARE ROUNDED TO THE
ISOMETRIC VIEW
ISOMETRIC VIEW

2. SPECIFICATIONS MAY BE SUBJECT
TO CHANGE WITHOUT NOTICE.

3. UNITS WITH BYPASS WILL REQUIRE
CONNECTION OF THE BYPASS DUCT
(BY OTHERS).

4. FOR INSTALLATION USE REFER TO I&O MANUAL SUPPLEMENT FOR BYPASS.

5. DAMPERS SHIPPED LOOSE, FIELD INSTALLATION ORIENTATION
UNIT MOUNTING & APPLICATION
Can be mounted in any orientation. Airstreams can not be switched.

Available as shown in dimension drawing.

Model: HE1XINV [Bypass]

Drawing Type: Unit Dimension

Version: MAY18

INSTALLATION ORIENTATION

NOTE

- DIMENSIONS ARE SPECIFIED TO THE NEAREST EIGHTH OF AN INCH.

- UNLESS OTHERWISE SPECIFIED, OUTSIDE AIR INTAKE TO BE LOCATED IN ROOM AIR INTAKE ORIENTATION.

- AIRFLOW CONFIGURATION

Model: HE-SERIES

Door-Interlocked Disconnect Switch

(OA/RA/BP) Damper Option (QTY. 3)

Shipped Loose

SCALE 1:18

FIGURE 5.3.1 HE1XINV DIMENSION DRAWING (VERTICAL AIRFLOW ORIENTATION)
5.4 MODEL HE1.5XIN DIMENSION DRAWINGS

FIGURE 5.4.0 HE1.5XIN DIMENSION DRAWING (HORIZONTAL AIRFLOW ORIENTATION)
ELECTRICAL DATA

Motor HP: 1.0

<table>
<thead>
<tr>
<th>HP Volts</th>
<th>HZ</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>277</td>
<td>60</td>
</tr>
<tr>
<td>2.5</td>
<td>140</td>
<td>1</td>
</tr>
<tr>
<td>1.5</td>
<td>277</td>
<td>60</td>
</tr>
<tr>
<td>3.0</td>
<td>277</td>
<td>60</td>
</tr>
</tbody>
</table>

AIRFLOW PERFORMANCE

Airflow performance includes effect of clean, standard filter supplied with unit.

- **Model:** HE1.5X
- **Effectiveness (%):**
 - 30%
 - 50%
 - 70%
 - 90%
- **Airflow (CFM):**
 - 940 CFM
 - 950 CFM
 - 1,090 CFM
 - 1,115 CFM
 - 1,225 CFM
 - 1,280 CFM
 - 1,340 CFM
 - 1,435 CFM
 - 1,470 CFM
 - 1,500 CFM
 - 1,545 CFM
 - 1,575 CFM
 - 1,570 CFM
- **Power Rating:**
 - 1,380 Watts
 - 1,410 Watts
 - 1,430 Watts
 - 1,470 Watts
 - 1,525 Watts
 - 1,545 Watts
 - 1,575 Watts

INSTALLATION ORIENTATION

The unit can be installed in any orientation.

OPTIONS

- **Energy Recovery Ventilator Standard with Bypass Economizer**
- **Energy Recovery Ventilator With Bypass Economizer Option (Standard & EC Motor)**

ABBREVIATIONS

- **EA:** Exhaust Air to outside
- **OA:** Outside Air intake
- **RA:** Room Air to be exhausted
- **FA:** Fresh Air to inside
- **BP:** Bypass

INSTALLATION DIMENSIONS

- **49 5/8” Case:**
 - 11 3/8” Minimum
 - 4 1/4” Damper for Bypass Units
- **49 1/2” Case:**
 - 12” Bypass Damper
- **54 3/4” Case:**
 - 18” x 18” Isolation Damper

INSTALLATION SCHEMATIC

BYPASS AIRFLOW SCHEMATIC

1. **Bypass Damper**
2. **Face Damper**
3. **BP** Damper (Optional)
4. **Door-Interlocked Disconnect Switch**
5. **Power Wiring**
6. **Control Wiring**
7. **Typ. Plug Location**
8. **Typ. Pressure Relief**
9. **Typ. Damper Optional**

FIGURE 5.4.1 HE1.5XINV DIMENSION DRAWING (VERTICAL AIRFLOW ORIENTATION)
5.5 MODEL HE2XIN DIMENSION DRAWINGS
5.6 MODEL HE3XIN DIMENSION DRAWINGS

FIGURE 5.6.0 HE3XIN DIMENSION DRAWING (HORIZONTAL AIRFLOW ORIENTATION)
FIGURE 5.6.1 HE3XINV DIMENSION DRAWING (VERTICAL AIRFLOW ORIENTATION)
5.7 MODEL HE4XIN DIMENSION DRAWINGS

FIGURE 5.7.0 HE4XINH DIMENSION DRAWING (HORIZONTAL AIRFLOW ORIENTATION)

- **Front View**
 - OA Inlet: 42" X 14" EA
 - FA: Fresh Air to Inside
 - Service Area: 38 7/8" Minimum

- **Top View**
 - Damper Location: 5 1/8" BP
 - BP Location: 34 1/2" X 18" Bypass Duct Connection

- **Left View**
 - Bypass Duct SCFM: 14.5-13.4
 - FLA: 5.3

- **Right View**
 - OA: Outside Air Intake
 - RA: Room Air to be Exhausted
 - FA: Fresh Air to Inside

Abbreviations
- OA: Outside Air Intake
- FA: Fresh Air Intake
- BP: Bypass Air Intake

NOTES
1. Ductwork with a capacity of 5000 SCFM or greater shall be installed in accordance with SMACNA rules.
2. Fused disconnect shall be installed on motors with VFDs.
3. Shaft grounding ring on motors with VFDs.
4. Onboard variable frequency drives (VFDs)
5. ABBREVIATIONS
- OA: Outside Air intake
- RA: Room Air to be exhausted
- FA: Fresh Air to inside
- BP: Bypass Duct

INSTALLATION OPTION
- Bypass Economizer

SPECIFICATIONS
- Outdoor Unit
- Indoor Unit
- Outdoor Air Intake
- Fan efficiency
- Motor efficiency
- VFD efficiency

SHIPPING DIMENSIONS & WEIGHT
- Pallet: 72 3/4" L x 82 3/4" W x 44" H
- Weight: 723-1,092 lbs., varies by option(s)

PRODUCT FEATURES
- Double wall construction
- Enhanced, premium exterior paint
- Custom colors available
- Cross-core differential pressure ports
- 24 VAC transformer/relay package
- AHRI 1060 certified core
- Four L125-G5
- Indirect gas-fired duct furnace - GH series
- Electric duct heater - EK series (1-175 kW)
- Smoke Detector - duct mount (SD-D), ceiling mount (MC-C), wall mount (MC-W)
- Motion occupancy sensor/control - (shipped loose)
- IAQ sensor - wall mount (IAQ-W), wall mount (CO2-W), duct mount (CO2-D)
- OA, RA or both airstreams
- Correlation of humidity and temperature in OA, RA or both airstreams
- Enthalpy controls (option)
- Dry-bulb temperature controls (standard)

PRODUCT OPTIONS
- Cross-core differential pressure ports
- Shaft grounding ring on motors with VFDs
- Onboard variable frequency drives (VFDs)
- ABBREVIATIONS
- OA: Outside Air intake
- RA: Room Air to be exhausted
- FA: Fresh Air to inside
- BP: Bypass Duct

ENERGY PERFORMANCE
- Typical Airflow range: 1,000-4,400 CFM
- Ventilation Type:
 - Standard with Bypass Economizer
 - Energy Recovery Ventilator

MATERIALS
- Exterior paint - white, custom colors
- Double wall construction
- Both airstreams

ACCESSORIES
- Qty. 2, Factory mounted filter alarms - enhanced, premium
- Fused disconnect
- Shaft grounding ring on motors with VFDs
- Onboard variable frequency drives (VFDs)

PRODUCT DATA
- See all AHRI certified ratings at www.ahrinet.org.

PRODUCT SPECIFICATIONS
- SHIP: 1,092 lbs.
- NEW: 1,092 lbs.
- Pallet: 72 3/4" L x 82 3/4" W x 44" H
- Weight: 723-1,092 lbs., varies by option(s)

PRODUCT MANUFACTURER
- RenewAire
- Energy Recovery Ventilation
Bypass Economizer OPTIONS

FIGURE 5.7.1 HE4XINV DIMENSION DRAWING (VERTICAL AIRFLOW ORIENTATION)

- **Abbreviations**
 - EA: Exhaust Air to outside
 - FA: Fresh Air to inside
 - OA: Outside Air to building
 - RA: Room Air to be exhausted
 - BP: Bypass

- **Installation Orientation**
 - Units must be installed in orientation specified by manufacturer.

- **Note**
 - Unless otherwise specified, dimensions are shown as a minimum distance required for operation.
 - Airflow performance includes effect of clean, standard filter supplied with unit.

- **Typical Airflow Range**
 - 1,000-4,400 CFM

- **Filters**
 - Cross-core differential pressure ports
 - Non-fused disconnect
 - TEFC Premium efficiency motors

- **Standard Features**
 - AHRI 1060 Certified Core:
 - Four L125-G5
 - Typical Airflow Range:
 - 1,000-4,400 CFM

- **Energy Recovery Ventilator**
 - Standard with Bypass Economizer

- **Service Area**
 - 5" Typ.

- **Recommended Minimum Duct Clearance (In.)**
 - 3/8" Typ.

- **5/8" Power In (optional)**
 - 21/2" Holes for wiring in bottom of E Box

- **Bypass Economizer Options**
 - EA: Exhaust Air to outside
 - RA: Room Air to be exhausted
 - FA: Fresh Air to inside

- **Carton Dimensions**
 - 34 1/2" H x 58" W x 58" D

- **Additional Information**
 - For installation details, refer to I&O Manual Supplement for bypass bypass economizer.

- **Contact Information**
 - 1.800.627.4499

Visual Elements
- Diagram showing the schematic of bypass airflow with labels for various components such as dampers, pressure ports, and wiring connections.
5.9 MODEL HE8XIN DIMENSION DRAWING

ABBRiEVATIONS
- OA: Outside Air
- RA: Room Air
- BP: Bypass Air

INSTALLATION ORIENTATION
Unit must be installed in orientation shown.

NOTE
1. Units have internal EA backward damper. Unless an EA motorized isolation damper is specified.
2. Units with bypass will require additional space for the connection of the bypass duct other(s).
3. Specifications may be subject to change without notice.
4. Bypass airflow is not shown.

AIRFLOW SCHEMATIC
- OA: Outside Air
- RA: Room Air
- BP: Bypass Air

SERVICE AREA
- Minimum 34 3/4" Area
- Minimum 5 1/8" for Damper Swing

UNIT CONFIGURATION
- Model: HE8XIN [Bypass]
- Must be mounted as shown. Airstreams cannot be switched.

INSTALLATION
For installation details, refer to I&O manual supplement for bypass.

DIMENSIONS
- Case: 112 5/8" x 85 5/8" x 31 1/2"
- Overall: 116 3/4" x 88" x 81 3/4"

SUPPLEMENTARY ITEMS
- Electric duct heater - EK series (1–175 kW)
- Smoke Detector - duct mount (SD-D) ceiling mount (MC-C), wall mount (MC-W)
- Motion occupancy sensor/control - duct mount (IAQ-D) wall mount (CO2-W), duct mount (CO2-D)
- Carbon dioxide sensor/control
- Digital time clock - wall mount (TC7D-W)
- Filters - MERV 13, 2"
- Exterior paint - white, custom colors
- 14.5-13.4
- 27.0-25.0
- 9.76
- 12.5
- 21.0-19.0
- 32.6
- 22.0
- 28.1
- 60.8
- 23.5
- 52.0
- 30%
- 50%
- 2000 4000 6000 8000 10000
- 8000 10,000 12,000 14,000 16,000
- Max.
- 45
- 20
- 25
- 60
- 30

FIGURE 5.9.0 HE8XIN DIMENSION DRAWING
6.0 OPERATION

6.1 UNIT START-UP DAMPER ADJUSTMENT

At time of unit start-up, it is required that the air streams be balanced to achieve maximum efficiency of the ERV and the bypass system. Balancing of the air streams is accomplished by measuring air flow in the two air streams and then adjusting the damper stops. This procedure will ensure that the static pressure drop through the bypass airpath equals that of the energy recovery airpath, which will cause the ventilation flow rate to be the same in both energy recovery mode and free cooling mode.

6.1.1 TOOLS REQUIRED FOR DAMPER ADJUSTMENT

Air velocity manometer or similar device.

6.1.2 DAMPER ADJUSTMENT PROCEEDURE

The bypass duct size is designed to allow more air than is needed in regular ventilation and is combined with a damper and an adjustable damper actuator to achieve balanced airflow.

When the ERV is in ventilation/recovery mode (not in bypass), use an air velocity manometer or similar device to determine the airflow CFM in both airstreams. Take note of the airflow in the RA to EA airstream. The airflow CFM in the RA to EA airstream during free cooling mode should match the airflow CFM during energy recovery.

1. Before starting the balancing procedure, confirm that the supply, exhaust, and bypass connections have been connected properly.

2. Make sure all power to the unit is “off” and all disconnect switches are in the “off” position.

3. In order to put the unit in free cooling mode manually, first disconnect the face and bypass damper actuators from the internal wire harness.

4. Connect each actuator to a known 24V power source with an appropriate cable.

5. Power on the unit and the bypass damper, allowing at least 60 seconds for the actuator to move to the proper position and the flow to stabilize.

6. Using an air velocity manometer or similar device, read the amount of airflow in the RA to EA airstream.

7. The actuator on the bypass damper has an adjustable stop that can be loosened and set so that the airflow (CFM) when in bypass is similar to the airflow (CFM) when in ventilation/recovery mode.

 a. If the airflow in recovery free cooling mode is too high, adjust the actuator so that the bypass damper opens to something less than 90 degrees (fully open). Repeat steps 5 and 6. When the desired flow rate is achieved move on to step 8.

8. Power down the unit and reconnect the damper actuators to the proper wire harnesses.
6.2 UNIT START-UP CONTROLS ADJUSTMENT

At time of unit start-up, the bypass controls must be checked for correct settings. The controls have been pre-set at the factory but they may become out of adjustment during shipping and handling. Remember that there are two different kinds of controls: dry bulb and enthalpy. Follow the settings information for the type of controls on the unit.

6.2.1 DRY BULB CONTROL SETTINGS

The dry bulb temperature controller features a thermistor placed in the outside air stream (internal to the unit) that senses the outside air temperature as it enters the unit. There are two dials on the dry bulb temperature controller to adjust both the high and low limits of the bypass range, and each dial has a range of 40°F to 95°F. Any time the outside air temperature rises through the temperature indicated on the high limit dial (labeled “H”), the controller calls for energy recovery. Any time the outside air temperature falls through the temperature indicated on the low limit dial (labeled “L”), the controller also calls for energy recovery. Any time the outside air temperature is above the low limit setpoint and below the high limit setpoint, the controller calls for bypass. Typical settings for the dry bulb temperature controller are 53°F for the low limit setpoint and a high limit setpoint that matches the desired room air temperature.

6.2.2 ENTHALPY CONTROL SETTINGS

The differential enthalpy controller features two enthalpy sensors placed in the outside air and return air streams (internal to the unit), and a thermistor placed in the outside air stream (internal to the unit). There is one low limit temperature dial (labeled “L”) on the controller with a range of -20°F to 120°F. The controller compares the outside air enthalpy to the room air enthalpy, and any time the outside air enthalpy rises above the room air enthalpy, the controller calls for energy recovery. Any time the outside air temperature falls through the low limit setpoint, the controller calls for energy recovery. Any time the outside air enthalpy is below the room air enthalpy and the outside air temperature is above the low limit setpoint, the controller calls for bypass. The typical setting for the low limit setpoint is 53°F.

7.0 MAINTENANCE

The most critical factor in maintaining the ERV and Core Bypass is cleanliness. Experience on the part of the customer will dictate the frequency of maintenance activities. Air conditions can change seasonally or even day-by-day. Follow the maintenance instructions for the RenewAire ERV, as found in its Installation, Operation and Maintenance Manual.

CAUTION

Risk of damage to the enthalpic core. Improper maintenance procedures may lead to damage of the enthalpic core.

When performing maintenance of the ERV or the core bypass, organic solvents are not to be used within the enclosure. In addition, high pressure air is not to be applied to the enthalpic core.

CAUTION

Risk of damage to the Core Bypass controls.

Whenever a control device is connected to or disconnected from the controls circuits, the power supply to the ERV must be disconnected. Lock and tag the disconnect switch or circuit breaker to prevent accidental reconnection of electric power.
8.0 TROUBLESHOOTING

CAUTION

Risk of damage to the Core Bypass controls.
Whenever a control device is connected to or disconnected from the controls circuits, the power supply to the ERV must be disconnected. Lock and tag the disconnect switch or circuit breaker to prevent accidental reconnection of electric power.

The most important resources for troubleshooting a suspected problem are the Sequence of Operation (SOO) and the wiring schematics. By referring to the SOO, it is possible to determine if an issue is a fault in the Core Bypass system or if the issue is a symptom of some other problem. Example: the ERV and its Bypass Option may be controlled by a BMS that is not allowing the ERV to go into free cooling mode. The symptom appears to be that the Core Bypass is not working, but the cause is actually the BMS.

Using the SOO, identify the stage in the sequence where the issue appears. Identify the reason why the core bypass is thought to be an issue. Using the electrical wiring schematics, further isolate the problem to a single component.

The SOO is found below, the electrical schematics are to be found in Section 5.0 of this document, and the ERV unit schematics are located in the red envelope in the unit electrical box.

8.1 SEQUENCE OF OPERATION (SOO)

1. Power is applied to the ERV
2. The bypass controls draw power from the onboard 24 V transformer and begin sensing the OA and RA (differential enthalpy only) conditions.
3. One of two things occurs:
 - Energy recovery mode
 • The sensors report to the controller that the ERV should be in energy recovery mode and the controller supplies power to the face damper actuator.
 • The face damper begins to power open, which may take up to 60 seconds.
 • Powering on the OA blower will begin immediately if there is no isolation damper on that airstream, or will be delayed until the isolation damper has been opened.
 • Powering on the EA blower will be delayed until the face damper has been opened.
 - Recovery free cooling mode
 • The sensors report to the controller that the ERV should be in recovery free cooling mode and the controller immediately supplies power to the bypass damper actuator.
 • The bypass damper begins to power open, which may take up to 60 seconds.
 • Powering on the OA blower will begin immediately if there is no isolation damper on that airstream, or will be delayed until the isolation damper has opened.
 • Powering on the EA blower will be delayed until the bypass damper has been opened.

4. If there is any significant distance between the ERV OA inlet and the intake at the building wall, it may take some time for the outdoor air to reach the ERV’s sensors. Allow for the ERV airflows to reach a steady state, during which time the unit could change modes.
5. When powering down the ERV, the blowers will turn off and both the bypass and face dampers will return to their default positions. The bypass damper and the face damper will be closed. Any installed isolation dampers will also spring closed.
Bypass Economizer OPTIONS

CASE

Mechanical Issues: Either the face damper or the bypass damper does not open when the ERV enters free cooling mode or energy recovery mode.

Control Issues: Neither damper responds when the unit is turned on or changes modes.

STEPS TO IDENTIFY MALFUNCTIONING COMPONENTS

1. Ensure that damper blades are not blocked or otherwise obstructed in the duct.
2. Ensure that the actuator has not come loose from the damper blade shaft.
3. Apply 24V power to the actuator to confirm that the actuator moves when it is powered, and spring returns when it is unpowered. Each damper should open when powered.

4. Ensure that the ambient conditions are correct for the unit to be in free cooling mode.
 - For dry bulb controls: The air entering the OA inlet for the unit has a temperature between the high and low limit settings. (NOTE: The low limit setting must be below the high limit setting in order for the unit to be in free cooling mode.)
 - For enthalpic controls: The air entering the OA inlet has a temperature above the low limit setting, and an enthalpy below that of the air entering the RA inlet.

ACTION

1. If the damper blades are blocked, remove any obstruction.
2. If the actuator clamp is loose, retighten the clamp on the blade shaft.
3. If the actuator does not respond or behave as expected when powered, replace the actuator.

If the air conditions are such that the ERV should be in free cooling mode and it is not, use the SOO to isolate the control component that seems to be malfunctioning and replace it.

9.0 FACTORY ASSISTANCE

In the unlikely event that you need assistance from the factory for a specific issue with the ERV or its Bypass Economizer Option, make sure that you have the information called for in the Unit Records pages at the front of this manual. The person you speak with at the factory will need that information to properly identify the unit and the installed options.

To contact RenewAire Customer Service:

Call 800-627-4499

Email: RenewAireSupport@RenewAire.com

Remember that RenewAire Customer Service can only assist with the ERV and its options, it cannot resolve engineering issues that result from air handling system design by others.

10.0 WARRANTY

The ERV Bypass Economizer Option is covered under the standard RenewAire ERV warranty. A copy of the warranty is included with the unit manuals. If the warranty should be lost or misplaced, a PDF version can be downloaded from:

https://www.renewaire.com/support/warranty/
About RenewAire

For over 30 years, RenewAire has been a pioneer in enhancing indoor air quality (IAQ) in commercial and residential buildings of every size. This is achieved while maximizing sustainability through our fifth-generation, static-plate, enthalpic-core Energy Recovery Ventilators (ERVs) that optimize energy efficiency, lower capital costs via load reduction and decrease operational expenses by minimizing equipment needs, resulting in significant energy savings. Our ERVs are competitively priced, simple to install, easy to use and maintain and have a quick payback. They also enjoy the industry’s best warranty with the lowest claims due to long-term reliability derived from innovative design practices, expert workmanship and Quick Response Manufacturing (QRM).

As the pioneer of static-plate core technology in North America, RenewAire is the largest ERV producer in the USA. We’re committed to sustainable manufacturing and lessening our environmental footprint, and to that end our Waunakee, WI plant is 100% powered by wind turbines. The facility is also one of the few buildings worldwide to be LEED and Green Globes certified, as well as having achieved ENERGY STAR Building status. In 2010, RenewAire joined the Soler & Palau (S&P) Ventilation Group in order to provide direct access to the latest in energy-efficient air-moving technologies. For more information, visit: renewaire.com