EV SERIES ERV
Installation, Operation and Maintenance Manual

EV130
EV200
EV240
EV300

Model: EV200 & EV240
Model: EV130
Model: EV300
There is no known safe level of cigarette smoke. Any ventilation system may provide noticeable improvement in spaces where cigarettes are smoked, but it cannot be expected to protect against the severe long-term health hazards of exposure to cigarette smoke.

WARNING

Provide Adequate Service Access for Maintenance

The unit will require regular filter and core inspections. Install the unit where you can access the core for cleaning and replacing the filters, and where you can get at the wiring for installation and service.

WARNING

Do not remove or disable the wiring interconnection between the Overload Relays and the Contactors. Without this inter-connection the motor(s) will not be protected against overload.

CAUTION

Do not remove or disable the wiring interconnection between the Overload Relays and the Contactors. Without this inter-connection the motor(s) will not be protected against overload.

CAUTION

Do not wash the Energy Exchange Core. Keep it away from water or fire to avoid damaging it. Always handle the core carefully.

CAUTION

Risk of Fire, Electric Shock, or Injury. Observe all Codes and the following:

1. Before servicing or cleaning the unit, unplug the line cord. Make sure the unit is not running before opening its door.
2. This installation manual shows the suggested installation method. Additional measures may be required by local codes and standards.
3. Installation work and electrical wiring must be done by qualified professional(s) in accordance with all applicable codes, standards, and licensing requirements.
4. Any structural alterations necessary for installation must comply with all applicable building, health, and safety code requirements.
5. Connect this unit only to a 120 VAC grounded receptacle protected by a 15 or 20 amp circuit breaker. Do not remove the unit's line cord.
6. Do not install unit or controls where they can be reached from a tub or shower.
7. This unit must be properly ducted to the outdoors.
8. Outside air inlet for this unit must be located away from sources of hazardous air such as auto exhausts.
9. Sufficient air is needed for proper combustion and exhausting of gases through the flue (chimney) of fuel burning equipment that might be installed in the area affected by this equipment. If this unit is exhausting air from a space in which chimney-vented fuel burning equipment is located, take steps to assure that combustion air supply is not affected. Follow the heating equipment manufacturer's requirements of applicable codes and standards.
10. This unit is intended for general ventilating only. Do not use to exhaust hazardous or explosive materials and vapors. Do not connect this unit to range hoods, fume hoods, or collection systems for toxics.
11. When cutting or drilling into wall or ceiling, do not damage electrical wiring and other hidden utilities.
12. Use the unit only in the manner intended by the manufacturer. If you have questions, contact the manufacturer.
SAVE THIS MANUAL

NOTICE

Information that is recorded is specific to just one ERV. If additional ERVs are being documented, please make copies of these pages and identify each copy by its unit tag.

UNIT INFORMATION

Record information as shown below. In the unlikely event that factory assistance is ever required, this information will be needed.

Locate the RenewAire unit label, to be found outside of the appliance. Record the model and serial numbers below.

NOTE: This information is for purposes of identifying the specific air handling appliance. Unit-specific option data can then be obtained, as needed, from the Model Number.

ERV Model:

- EV130
- EV200
- EV240
- EV300

Serial Number:

NOTE: This page is to be completed by the installing contractor. The completed document is to be turned over to the owner after start-up.

UNIT INFORMATION

HVI CERTIFIED RATINGS:

For G5 core, parameters shown, per HVI website 1/1/11.

HVI logo includes “TM”.

Serial number format: Eight characters.

1ST CHARACTER INDICATES MONTH (“D” = APRIL).

2ND & 3RD DIGITS INDICATE YEAR (“15” = 2015).

FOLLOWING FOUR DIGITS ARE SERIAL NUMBERS, ENDING WITH “R” TO SIGNIFY RESIDENTIAL UNIT.

EVERY EIGHT-DIGIT SERIAL NUMBER MUST BE UNIQUE -- NO DUPLICATES, EVEN ACROSS MODELS.
Energy Recovery Ventilator

Standard

SPECIFICATIONS

Ventilation Type: Static plate, heat and humidity transfer

Typical Airflow Range: 50-140 CFM

Unit is HVI Tested/Certified per CSA C439

Protocol: Using one L-50 G5 Core

Standard Features:
- White painted cabinet
- Line-cord power supply
- Low-voltage circuit for controls
- Unit may be mounted in any orientation
- Cross-core differential pressure ports

Controls:
- Onboard 24 VAC transformer/relay package with switched dry contacts

Filters:
- Total qty. 2, MERV 8, spun-polyester media: 10 1/2" x 10 1/2" x 1"

Unit Dimensions & Weight:
- 33 1/2" L x 13 1/4" W x 20" H
- 48 lbs.

Note: Indirect Gas-Fired Duct Furnace is not available on the EV130.

ELECTRICAL DATA

<table>
<thead>
<tr>
<th>HP</th>
<th>Volts</th>
<th>HZ</th>
<th>Phase</th>
<th>Input Watts</th>
<th>FLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>120</td>
<td>60</td>
<td>Single</td>
<td>102 @ 130 CFM</td>
<td>1.3</td>
</tr>
</tbody>
</table>

UNIT PERFORMANCE

<table>
<thead>
<tr>
<th>Airflow CFM</th>
<th>ESP in H₂O</th>
<th>Airflow CFM</th>
<th>Temp EFF%</th>
<th>Total EFF% Winter/Summer*</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>0.60</td>
<td>79</td>
<td>78</td>
<td>73/59</td>
</tr>
<tr>
<td>104</td>
<td>0.50</td>
<td>104</td>
<td>75</td>
<td>69/54</td>
</tr>
<tr>
<td>126</td>
<td>0.40</td>
<td>126</td>
<td>72</td>
<td>66/50</td>
</tr>
<tr>
<td>137</td>
<td>0.30</td>
<td>137</td>
<td>71</td>
<td>64/48</td>
</tr>
<tr>
<td>153</td>
<td>0.20</td>
<td>153</td>
<td>68</td>
<td>61/45</td>
</tr>
<tr>
<td>165</td>
<td>0.10</td>
<td>165</td>
<td>67</td>
<td>59/42</td>
</tr>
</tbody>
</table>

CORE PERFORMANCE

Max. Shipping Dimensions & Weight (in carton):
- 32" L x 22" W x 18" H
- 60 lbs.

Motor(s):
- Qty. 1, Double-shaft standard motor

Accessories:
- Backdraft damper 6", 8"
- Automatic balancing damper 4", 5", 6"
- Louvered wall vent 6" - white, brown
- Carbon dioxide sensor/control - wall mount (CO2-W)
- IAQ sensor - wall mount (IAQ-W)
- Motion occupancy sensor/control - ceiling mount (MC-C), wall mount (MC-W)
- Percentage timer control (PTL)
- Push-button point-of-use controls (PBL), PTL req'd.
- Percentage timer control with furnace interlock (FM)
- MERV 13 filter - OA airstream
- Electric duct heater - RH series (1-11.5 kW);
- designed for indoor ductwork installation only

UNIT DIMENSIONS

AIRFLOW ORIENTATION

Available as shown in dimension drawing.

UNIT MOUNTING & APPLICATION

Can be mounted in any orientation. RA/EA airstream can be switched with OA/FA airstream.

NOTE

1. UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE ROUNDED TO THE NEAREST EIGHTH OF AN INCH.
2. SPECIFICATIONS MAY BE SUBJECT TO CHANGE WITHOUT NOTICE.

Abbreviations

EA: Exhaust Air to outside
OA: Outside Air intake
FA: Fresh Air to inside
IAQ: Indoor Air Quality
FA: Furnace Air to inside
MC: Ceiling mount (MC-C), wall mount (MC-W)
PTL: Percentage timer control
FM: Percentage timer control with furnace interlock
PBL: Push-button point-of-use controls
PBL: PTL req’d.
PBL: Percentage timer control
CO2: Carbon dioxide sensor
IAQ: IAQ sensor - wall mount
IAQ: CO2 sensor - wall mount
Louvered: Wall vent 6" - white, brown

Door Swing

12 7/8" Case

Service Area

11 1/4" Minimum Service Area

(Door can be removed from hinges.)

Terminal

24V AC Control Terminal

SPECIFICATIONS & DIMENSIONS

Download specification at: renewaire.com/specifications

Specifications may be subject to change without notice.
Energy Recovery Ventilator
Standard

SPECIFICATIONS

Ventilation Type:
Static plate, heat and humidity transfer

Typical Airflow Range: 100–200 CFM

Unit is HVI Tested/Certified per CSA C439
Protocol: Using one L-100 G5 Core

Standard Features:
White painted cabinet
Line-cord power supply
Low-voltage circuit for controls
Unit may be mounted in any orientation
Cross-core differential pressure ports

Controls:
Onboard 24 VAC transformer/relay package with switched dry contacts

Filters:
Total qty. 2, MERV 8, spun-polyester media:
10 1/2” x 21 3/4” x 1”

Unit Dimensions & Weight:
33 1/2” L x 24” W x 20” H
68 lbs.

Max. Shipping Dimensions & Weight (on pallet):
34” L x 44” W x 34” H
110 lbs.

Motor(s):
Ody. 1, Double-shaft standard motor

Accessories:
Backdraft damper 6”, 8”
Automatic balancing damper 4”, 5”, 6”
Louvers wall vent 6” - white, brown
Louvers wall vent 8” - taupe vinyl, galvanized, paintable galvanneal
Louvers wall vent with 8” round duct connection - 12” W x 8” H
Carbon dioxide sensor/control - wall mount (CO2-W)
IAQ sensor - wall mount (IAQ-W)
Motion occupancy sensor/control - ceiling mount (MC-C), wall mount (MC-W)
Percentage timer control (PTL)
Push-button point-of-use controls (PBL), PTL req’d.
Percentage timer control with furnace interlock (FM)
MERV 13 filter - OA airstream
Electrical duct heater - RH series (1-11.5 kW);
MERV 13 filter - OA airstream

UNIT PERFORMANCE

Airflow CFM
122
149
168
176
186
192
207

ESP in H₂O
0.70
0.60
0.50
0.40
0.30
0.20
0.10

CORE PERFORMANCE

Airflow CFM
122
149
168
176
186
192
207

Temp EFF% Winter/Summer
81
79
78
78
77
77
76

Total EFF%
77/64
75/61
73/59
72/58
72/58
71/57
70/56

Note: These are core-only ratings and are not HVI certified.
HVI ratings apply to complete units only.
See HVI certification ratings on pg. 24 of Single/Multi-Family Catalog.

UNIT DIMENSIONS

Airflow Orientation
Available as shown in dimension drawing.

Unit Mounting & Application
Can be mounted in any orientation. RA/EA airstream can be switched with OA/FA airstream.

Notes:
1. Unless otherwise specified, dimensions are rounded to the nearest eight of an inch.
2. Specifications may be subject to change without notice.
3. Depending on orientation, the nearest eighth of an inch.
4. ABBREVIATIONS:
OA: Outside Air intake
EA: Exhaust Air to outside
RA: Room Air to be exhausted
IA: Inlet Air
5. ABBREVIATIONS:
FM: Furnace interlock
PTL: Percentage timer control
PBL: Push-button point-of-use control
IAQ-W: IAQ sensor wall mount
CO2-W: Carbon dioxide sensor wall mount
MC-C: Motion sensor ceiling mount
MC-W: Motion sensor wall mount

Electrical Data

<table>
<thead>
<tr>
<th>HP</th>
<th>Volts</th>
<th>HZ</th>
<th>Phase</th>
<th>Input Watts</th>
<th>FLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>120</td>
<td>60</td>
<td>Single</td>
<td>157 @ 181 CFM</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Download specification at: renewaire.com/specifications
Energy Recovery Ventilator

Standard

SPECIFICATIONS

- **Ventilation Type:** Static plate, heat and humidity transfer
- **Typical Airflow Range:** 100-240 CFM
- **Unit is HVI Tested/Certified per CSA C439**
- **Protocol:** Using one L-100 GS Core
- **Standard Features:**
 - White painted cabinet
 - Line-cord power supply
 - Low-voltage circuit for controls
 - Cross-core differential pressure ports
- **Controls:**
 - Onboard 24 VAC transformer/relay package
 - Low-voltage circuit for controls
- **Filters:**
 - Total qty. 2, MERV 8, spun-polyester media:
 - 10 1/2" x 21 3/4" x 1"
- **Unit Dimensions & Weight:**
 - 33 1/8" L x 24" W x 20" H
 - 70 lbs.

NOTE:

- Indirect Gas-Fired Duct Furnace is not available on the EV240.
- HVI ratings apply to complete units only.
- See HVI certification ratings on pg. 24 of Single/Multi-Family Catalog.

ELECTRICAL DATA

<table>
<thead>
<tr>
<th>HP</th>
<th>Volts</th>
<th>HZ</th>
<th>Phase</th>
<th>Input Watts</th>
<th>FLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>120</td>
<td>60</td>
<td>Single</td>
<td>216 @ 236 CFM</td>
<td>3.3</td>
</tr>
</tbody>
</table>

UNIT PERFORMANCE

<table>
<thead>
<tr>
<th>Airflow CFM</th>
<th>ESP in H₂O</th>
<th>Core Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>0.80</td>
<td>Airflow CFM, Temp EFP%, Total EFF% Winter/Summer*</td>
</tr>
<tr>
<td>195</td>
<td>0.70</td>
<td>170</td>
</tr>
<tr>
<td>214</td>
<td>0.60</td>
<td>195</td>
</tr>
<tr>
<td>229</td>
<td>0.50</td>
<td>214</td>
</tr>
<tr>
<td>242</td>
<td>0.40</td>
<td>229</td>
</tr>
<tr>
<td>250</td>
<td>0.30</td>
<td>242</td>
</tr>
<tr>
<td>256</td>
<td>0.20</td>
<td>250</td>
</tr>
<tr>
<td>265</td>
<td>0.10</td>
<td>256</td>
</tr>
</tbody>
</table>

UNIT DIMENSIONS

AIRFLOW ORIENTATION
- Available as shown in dimension drawing.

UNIT MOUNTING & APPLICATION
- Can be mounted in any orientation. RA/EA airstream can be switched with OA/FA airstream.

ABBREVIATIONS
- EA: Exhaust Air to outside
- CA: Outside Air intake
- RA: Room Air to be exhausted
- FA: Fresh Air to inside

INSTALLATION ORIENTATION
- Unit may be installed in any orientation.

NOTE
- 1. UNLESS OTHERWISE SPECIFIED, DIMENSIONS ARE ROUNDED TO THE NEAREST EIGHTH OF AN INCH.
- 2. SPECIFICATIONS MAY BE SUBJECT TO CHANGE WITHOUT NOTICE.

Specifications may be subject to change without notice.
Energy Recovery Ventilator
Standard

SPECIFICATIONS

Ventilation Type:
Static plate, heat and humidity transfer

Typical Airflow Range: 150-300 CFM

Unit is HVI Tested/Certified per CSA C439

Protocol: Using one L-100 G5 Core

Standard Features:
White painted cabinet
Line-cord power supply
Low-voltage circuit for controls
Unit may be mounted in any orientation
Cross-core differential pressure ports

Controls:
Onboard 24 VAC transformer/relay package
with switched dry contacts

Filters:
Total qty. 2, MERV 8, spun-polyester media:
 10 1/2" x 21 3/4" x 1"

Unit Dimensions & Weight:
33 3/4" L x 24" W x 20" H
72 lbs.

Unit Performance

Max. Shipping Dimensions & Weight (on pallet):
 34" L x 44" W x 34" H
 115 lbs.

Motor(s):
Qty. 1, Double-shaft standard motor

Accessories:
Backdraft damper 6", 8"
Automatic balancing damper 4", 5", 6"
Louvered wall vent 8" - taupe vinyl, galvanized,
paintable galvanneal
Louvered wall vent with 8" round duct connection -
 12" W x 8" H
Carbon dioxide sensor/control - wall mount (CO2-W)
IAQ sensor - wall mount (IAQ-W)
Motion occupancy sensor/control -
 ceiling mount (MC-C), wall mount (MC-W)
Percentage timer control (PTL)
Push-button point-of-use controls (PBL), PTL req'd.
Percentage timer control with furnace interlock (FM)
MERV 13 filter - OA airstream
Electric duct heater - RH series (1-11.5 kW);
designed for indoor ductwork installation only

Note: Indirect Gas-Fired Duct Furnace is not available on the EV300.

HVI ratings apply to complete units only.
See HVI certification ratings on pg. 24 of Single/Multi-Family Catalog.

ELECTRICAL DATA

<table>
<thead>
<tr>
<th>HP</th>
<th>Volts</th>
<th>HZ</th>
<th>Phase</th>
<th>Input Watts</th>
<th>FLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>120</td>
<td>60</td>
<td>Single</td>
<td>315 @ 297 CFM</td>
<td>3.3</td>
</tr>
</tbody>
</table>

UNIT PERFORMANCE

<table>
<thead>
<tr>
<th>Airflow CFM</th>
<th>ESP in H2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>1.0</td>
</tr>
<tr>
<td>191</td>
<td>0.9</td>
</tr>
<tr>
<td>215</td>
<td>0.8</td>
</tr>
<tr>
<td>256</td>
<td>0.7</td>
</tr>
<tr>
<td>277</td>
<td>0.6</td>
</tr>
<tr>
<td>295</td>
<td>0.5</td>
</tr>
<tr>
<td>311</td>
<td>0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Airflow CFM</th>
<th>Temp EFF%</th>
<th>Total EFF%</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>78</td>
<td>73/59</td>
</tr>
<tr>
<td>191</td>
<td>77</td>
<td>71/57</td>
</tr>
<tr>
<td>215</td>
<td>75</td>
<td>69/55</td>
</tr>
<tr>
<td>256</td>
<td>73</td>
<td>66/51</td>
</tr>
<tr>
<td>277</td>
<td>71</td>
<td>65/49</td>
</tr>
<tr>
<td>295</td>
<td>70</td>
<td>63/47</td>
</tr>
<tr>
<td>311</td>
<td>69</td>
<td>62/46</td>
</tr>
</tbody>
</table>

Note: These are core-only ratings and are not HVI certified.

UNIT DIMENSIONS

AIRFLOW ORIENTATION
Available as shown in dimension drawing.

UNIT MOUNTING & APPLICATION
Can be mounted in any orientation. RA/EA airstream
can be switched with OA/FA airstream.

Specifications may be subject
to change without notice.
TABLE OF CONTENTS

ERV

EV130, EV200, EV240, and EV300

1.0 OVERVIEW

1.1 DEFINITIONS

1.2 DESCRIPTION

- 1.2.1 Purpose of an ERV System
- 1.2.2 When Should You Use Your ERV
- 1.2.3 Using an ERV with Air-Conditioning
- 1.2.4 Controlling Excess Humidity During Cold Weather

2.0 UNIT PLACEMENT

2.1 BEFORE YOU BEGIN

2.2 LOCATION OF THE UNIT

2.3 DUCT SIZES AND INSULATION

- 2.3.1 Duct Sizes

2.4 DUCTWORK APPLICATIONS

3.0 INSTALLATION

3.1 MOUNTING THE UNIT

3.2 INSTALLING OUTSIDE AIR AND EXHAUST AIR DUCTS

3.3 INSTALLING RETURN AIR DUCTS

3.4 INSTALLING FRESH AIR DUCTS

3.5 CONTROLS

- 3.5.1 Installing Controls

4.0 OPERATION

4.1 STARTING UP THE UNIT

4.2 VERIFYING UNIT PERFORMANCE

- 4.2.1 Airflow
- 4.2.2 Use Static Taps to Measure Airflow Rates
- 4.2.3 Use Damper to Balance Airflow to Desired Rates

4.3 MEASURE AIRFLOW

4.4 MEASURING CROSS CORE STATIC PRESSURE

5.0 MAINTENANCE

5.1 TO CLEAN THE ENERGY EXCHANGE ELEMENT

5.2 INSPECT AND CHANGE THE FILTERS REGULARLY

5.3 MOTOR MAINTENANCE

5.4 GENERAL CLEANING AND INSPECTION

5.5 SERVICE PARTS
TABLE OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.2.0 Service Clearances</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.4.0 Separate Room Air Pick-up—Fresh Air to Furnace Return Air Trunkline</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.4.1 Separate Air and Fresh Air Supply, EV130 Shown</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.4.2 Furnace Return Air Back into Return Air</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.4.3 Furnace Return Air Back into Supply Air</td>
<td>13</td>
</tr>
<tr>
<td>Figure 3.1.0 Mounting the ERV to a Stud Wall</td>
<td>14</td>
</tr>
<tr>
<td>Figure 3.5.0 Typical Control Schematic</td>
<td>16</td>
</tr>
<tr>
<td>Figure 4.2.0 Damper installation</td>
<td>17</td>
</tr>
<tr>
<td>Figure 4.4.0 Airflow Diagram EV130, EV200, EV240, EV300</td>
<td>18</td>
</tr>
<tr>
<td>Figure 5.5.0 Service Parts, EV130 Shown</td>
<td>19</td>
</tr>
</tbody>
</table>
1.0 OVERVIEW

1.1 DEFINITIONS

Energy Exchange System:
Cross flow fixed-plate enthalpic energy exchange core: engineered, proprietary resin-media composite. Provides both sensible and latent heat transfer.

Access Door:
Front panel opens to provide access to filters, blowers, and energy exchanger. Snap latches and hinges provided for easy service.

Insulation:
1” foil-faced EPS foam throughout.

Blower/Motor:
A single high efficiency PSC motor directly drives two large diameter centrifugal blowers for quiet operation.

Warranty:
Ten year limited warranty on energy exchange core; five year limited warranty against defects in material and workmanship on all other components.

1.2 DESCRIPTION

1.2.1 Purpose of an ERV System
Many modern homes are built air-tight for energy efficiency and comfort. The result is that natural air infiltration rates are often too low to provide acceptable indoor air quality. The solution is to use an ERV to remove gaseous pollutants such as odors, winter-time excess humidity, formaldehyde, smoke, radon, vapors from cleaning products, and other chemicals. The removal of dust and other small particles from your home is not the function of an ERV.

1.2.2 When Should You Use Your ERV?
Use your ERV when windows are closed and you need to ventilate. When the outdoor air is warmer or cooler than comfortable, the ERV will allow a quieter, more secure home with the windows closed and will also save energy.

1.2.3 Using an ERV with Air-Conditioning
An ERV works very well with air-conditioning, because its “enthalpy-transfer” energy-exchange core will reduce the amount of moisture in the outside air that is brought in. ERVs are the preferred way to ventilate while air-conditioning because it brings in less moisture than any other ventilation method.

1.2.4 Controlling Excess Humidity During Cold Weather
When the ERV is first turned on at the beginning of the heating season (or when first installed), it will have to run full-time for several days to reduce indoor humidity levels. A properly set dehumidistat will do this automatically. If your control is the proportional timer type (PTL or FM), it should be set to “100%” for several days whenever you have a problem with excess humidity during cold weather.

2.0 UNIT PLACEMENT

2.1 BEFORE YOU BEGIN
Read all instructions before installing the unit. Also review supplemental instructions included with any controls that will be installed. Carefully unpack and inspect the unit for shipping damage. Open the access door and inspect inside the unit. Attach the four duct collars to the unit with the screws provided in the plastic small-parts bag.

NOTE: This unit is an Energy Recovery Ventilator, or ERV. It is commonly referred to throughout this manual as an ERV.
2.2 LOCATION OF THE UNIT

Select a location so that:

- The fresh air intake vent from the outside is placed a minimum of 10' from any other contaminated exhaust vent, and is at least 30" long.
- The two ducts to the outside are as short and straight as possible, for the best performance from the system. Shorter duct runs help assure that the system is balanced: the amount of air brought in is equal to the amount of air exhausted.
- The power cord reaches an electrical outlet.
- The door can be opened to allow cleaning the core and filters. Provide at least 24" of clearance at front of unit for service access to the blowers, filters and energy exchange core.
- The exhaust outlet and fresh air inlet on the outside of the building should be at least ten feet apart to avoid cross-contamination. The exhaust duct should be about the same length as the fresh air duct.
- The exhaust outlet should not dump air into an enclosed space or into any other structure.
- Do not install the exhaust outlet and fresh air inlet through the roof.

The preferred mounting location for the unit is on a concrete foundation wall because the foundation wall will isolate any blower vibration.

If a basement area is not available or practical, use other mechanical room space such as a closet, garage, storage, or accessible attic or crawl space.

![FIGURE 2.2.0 SERVICE CLEARANCES](image)

2.3 DUCT SIZES AND INSULATION

The Exhaust Air Duct and the Outside Air Duct connect the unit to the outside. Flexible insulated duct is typically used.

2.3.1 Duct Sizes

Exhaust Air & Outside Air (EA & OA):

- EV130—6" round insulated duct, 8" round insulated duct may be used to maintain maximum airflow.
- EV200, EV240 and EV300—8" round insulated duct recommended.

Fresh Air & Return Air (FA & RA):

- 6" round or 8" oval rigid un-insulated.

Ducts from unit to house in unconditioned spaces:

- All ducts from unit to house in unconditioned spaces like attics and crawl spaces must be insulated.
2.4 DUCTWORK APPLICATIONS

- FOR HOUSES WITHOUT DUCTED HEATING OR COOLING SYSTEMS—SEE FIGURE 2.4.1.
 In most houses one or two fresh air grilles in a central part of the house provide effective distribution of the fresh air into the home, particularly when the stale exhaust air is picked up at several points. Because the fresh air is not fully conditioned, the fresh air supply grilles should be located in a traffic area like a hallway or stairway rather than in a sitting area.

 If you want to get fresh air into specific rooms with high occupancy, you can split up the fresh air supply.

- FOR HOUSES WITHOUT DUCTED HEATING OR COOLING SYSTEMS—SEE FIGURES 2.4.0, 2.4.2, AND 2.4.3.
 Most units are installed with the fresh air duct connected directly to a return duct for the main heating and cooling system. Be careful to connect the fresh air duct at least three feet from the return plenum to minimize suction from the furnace blower. A connection closer to the furnace may result in unbalanced flow and associated problems.

- FOR INSTALLATIONS THAT COLLECT STALE AIR FROM SPECIFIC ROOMS IN THE HOME—SEE FIGURES 2.4.0 AND 2.4.1.
 Locate stale air return grilles (RA) in rooms where moisture and odors are generated: bathrooms, the kitchen, and perhaps other areas where contaminants are generated such as in the home workshop. Return grilles in these other areas may be dampered so that they can be shut off when not in use. A central location such as a hallway is also acceptable but won’t clear humidity and odors from baths and kitchens as rapidly.

 Locate stale air return grilles (RA) near the ceiling on inside walls. Stale air returns are usually easiest to install in interior partitions. Put them in the ceiling if that is easier.

- STALE AIR RETURN GRILLE SIZES (8” round on EV300)
 - BATHROOM: 4” x 10” or 6” x 10”—40 to 60 sq. in.
 - KITCHEN: 6” x 10”—60 sq. in.

- CAN AN ERV BE USED TO VENTILATE BATHROOMS?
 A RenewAire ERV can be used as a central exhaust system in place of bathroom exhaust fans. Tie a grille in each bathroom directly back to the ERV—see Figure 2.4.0. A successful installation should provide at least 50 CFM of exhaust per moisture producing bathroom. When used for bathroom exhaust, the EV130 should be used for no more than two bathrooms, the EV200 and EV240 for up to four bathrooms and the EV300 for up to six bathrooms. Install a control in each bathroom ventilated by the ERV.

- FOR HOUSES WHERE RADON IS A CONCERN.
 The first line of defense against radon should always be techniques that prevent the entry of radon into the home, such as under-slab suction, vented perimeter drainage, and crack sealing. However, if moderate levels of radon continue to be present, it is important that the unit slightly pressurize the basement, not de-pressurize the basement. Installation of this unit for radon mitigation is beyond the scope of this manual. Consult a radon mitigation professional.
NOTE: ERV blower may be operated separate from furnace blower.

FIGURE 2.4.0 SEPARATE ROOM AIR PICK-UP—FRESH AIR TO FURNACE RETURN AIR TRUNKLINE

FIGURE 2.4.1 SEPARATE RETURN AIR AND FRESH AIR SUPPLY, EV130 SHOWN

FIGURE 2.4.2 FURNACE RETURN AIR BACK INTO RETURN AIR

FIGURE 2.4.3 FURNACE RETURN AIR BACK INTO SUPPLY AIR

NOTE: ERV blower may be operated separate from furnace blower.

NOTE: The furnace blower must be operated any time the ERV is operated. Use furnace fan “on” continuous low speed or optional FM control to cycle furnace fan on ERV.

NOTE: ERV blower may be operated separate from furnace blower.
3.0 INSTALLATION

3.1 MOUNTING THE UNIT

- **UNIT MAY BE INSTALLED IN ANY ORIENTATION**
 Orient the unit for the simplest duct layout and connections.

- **MOUNT THE ERV ON A CONCRETE FOUNDATION WALL**
 Mount hanging bracket to the wall with appropriate concrete anchors. Use pre-cut foam tape from small parts bag. Remove backing and apply two pieces of foam tape equally spaced along the unit’s mounting flange to be held by the hanging bracket. Apply the other two pieces of foam over two holes that will be used for fastening, on the other flange. The tape should be applied in a “U” shape to cushion both the front and back of the integral flanges. Lift unit and slide unit flange into the hanging bracket. Using metal flat washers, fasten flange opposite hanging bracket to structure. Safety screws should similarly be installed passing through the hanging bracket and flange. Make sure the screws, which you must supply, are properly selected for the loads and substrate involved.

- **MOUNTING THE ERV TO A STUD WALL**
 Mount unit using supplied hanging bracket kit as described for mounting to concrete foundation wall.

- **SUSPENDING THE ERV FROM FLOOR JOISTS OR TRUSSES**
 The unit may be screwed directly to joists or trusses using the hanging bracket and integral flange. Mount as described for mounting to concrete foundation wall.

3.2 INSTALLING OUTSIDE AIR AND EXHAUST AIR DUCTS

Ducts connecting the unit to the outside must be well-insulated.

Band or tape inner duct liner to inner flange of appropriate collar. Drive a sheet metal screw through liner to secure duct spiral wire to collar. Straighten insulation, and slide outer duct jacket onto the outer flange of the duct collar. Secure with band or tape.

The inlets and outlets should be screened against insects and vermin and shielded from the weather to prevent the entry of rain or snow.
3.3 INSTALLING RETURN AIR DUCTS

All the stale air returns are connected by ducts to the unit. Generally, empty stud cavities are used for returns as is often done with cold air returns for the furnace, using standard duct boots to connect to six inch pipe at the bottom or top of the wall cavity. Always be sure to seal all joints with duct sealant or tape. Some local codes may require metal ducting all the way from the boots to the stale air grilles. Use rigid ducts to allow the air to move freely and easily through the ducts. See Duct Sizes to size your duct work.

If duct runs are very long (over 25’ of flex duct for 130 CFM or over 10’ for 200 CFM each run) or have excessive bends or elbows or if maximum airflow rates are required, eight inch insulated flexible duct should be used. The outer flange of the duct collar can be used for both the inner and outer jacket of the flexible duct. Care must be taken to insure that the duct is securely fastened and sealed to the duct collar.

DO NOT USE MORE FLEX DUCT THAN NECESSARY!
Flex duct is much more resistant to airflow than rigid duct; longer runs of flex duct will reduce the ventilation performance of your system. Stretch flex duct and avoid sharp bends.

3.4 INSTALLING FRESH AIR DUCTS

Use a five foot section of flexible insulated duct to connect the unit to the ducts at the port labeled Fresh Air to the Inside. This will cut noise transmitted from the unit. Stretch the flex duct tightly in order to maintain good airflow.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install Fresh Air Inlet Away From Sources of Contaminants.</td>
</tr>
<tr>
<td>• Do not locate the fresh air inlet where vehicles may be serviced or left idling.</td>
</tr>
<tr>
<td>• The fresh air inlet should be at least 10’ away from any exhaust such as dryer vents, chimneys, furnace and water heater exhausts, or other sources of contamination or carbon monoxide.</td>
</tr>
<tr>
<td>• Install 12” above ground level.</td>
</tr>
<tr>
<td>• Never locate the fresh air inlet inside a structure.</td>
</tr>
</tbody>
</table>

3.5 CONTROLS

For an installation in which the ERV should run continuously in order to provide the required ventilation rate for the home, no controls are needed. However, in most installations, control over the unit operation is desired and this is best provided by an optional RenewAire Percentage Timer Control (PTL or FM).

Percentage timers (PTL or FM controls) may be located anywhere that is convenient. A typical location for either control is next to the home’s thermostat. Percentage timers operate the ERV to provide regular background ventilation of the home.

ERV installations that pull stale air from specific rooms, such as bathrooms, should have optional RenewAire Push-button Lighted (PBL) Controls in those rooms. The secondary operating controls allow the system to be turned on from various locations in the house.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER OF ELECTRICAL SHOCK WHEN SERVICING AN INSTALLED UNIT.</td>
</tr>
<tr>
<td>Always unplug unit before connecting or servicing controls.</td>
</tr>
</tbody>
</table>
3.5.1 Installing Controls

- **Optional Controls:**
 RenewAire offers a variety of controls specifically designed to work with the EV130/200/240/300 products. These include: PTL (a two wire percentage timer), FM (a six wire percentage timer that will interconnect with the furnace blower), and PBL (point of use push button control). Other controls that throw an unpowered switch may also be used.

- **Typical Control Schematic:** Various wiring designs can be used to properly control the unit and meet safety and code concerns. Consult your electrician for an electrical design to meet your needs.

The schematic below (Figure 3.5.0) shows a typical control system: a PTL percentage timer plus three PBL push-button controls.

![Figure 3.5.0 Typical Control Schematic](image)

See installation manuals for the control(s) you select for wiring diagrams and specific instructions.

- If **NOT** connecting controls to the ERV:
 Make a jumper out of a short piece of wire. ERV will run full-time once its power cord is plugged in.

4.0 OPERATION

4.1 STARTING UP THE UNIT

- Inspect your installation to be sure all duct work is correctly installed and sealed, that filters are in place, and controls (if any) are connected.
- Shut and latch the door to the unit.
- Plug unit into 115 VAC outlet. It may start immediately.
- Use control to turn on the unit. Check operation of the control(s).
- Check that the unit’s safety interlock switch turns off the unit when the door is opened.

4.2 VERIFYING UNIT PERFORMANCE

4.2.1 Airflow

Airflow should be occurring in both airstreams. Sometimes the easiest place to confirm that air is moving is at the external wall caps. If exact airflow is critical, it may be desirable to permanently install flow measuring stations and manometers. These can also be used to determine when filters should be cleaned or changed.

4.2.2 **Use Static Taps to Measure Airflow Rates**

See Differential Static Across Core tables in Section 4.4 on page 18.
4.2.3 Use Damper to Balance Airflow to Desired Rates, if necessary

The ERV’s blower motors are well suited for volume control by dampers on the inlet of the unit. One balancing damper is provided in the unit parts tray.

After measuring the airflow of the unit, the balanced damper may be used to balance airflow if desired. Place the damper between the duct collar and the unit for the inlet of the airstream recording higher flow.

Slowly move the damper further into the duct until the desired airflow is recorded. Secure the damper in place using 1/8” tek screws (provided).

FIGURE 4.2.0 DAMPER INSTALLATION

4.3 MEASURING AIRFLOW

4.3.1 Equipment Required

- A manehelic gauge or other device capable of measuring 0–1.0 in. water of differential pressure.
- 2 pieces of natural rubber latex tubing, 1/8” ID, 1/16” Wall works the best.

4.4 MEASURING CROSS CORE STATIC PRESSURE

The individual differential static pressures (DP) are measured using the installed pressure ports located in the front of the units core access doors.

Do not relocate pressure ports.

- To read SCFM of Fresh Air (FA) install the “high” pressure side (+) of your measuring device to the Outside Air (OA) port and the “low” pressure side (-) to the Fresh Air (FA) port.
- To read SCFM of Room Air (RA) install the “high” pressure side (+) of your measuring device to the Room Air (RA) port and the “low” pressure side (-) to the Exhaust Air (EA) port.
- If gauge drops below zero, reverse tubing connections.
- Use the reading displayed on your measurement device to cross reference the CFM output using the conversion chart.

CAUTION

Make sure clean filters are installed before balancing airflow. Dirty or clogged filters reduce airflow through the unit.

NOTE: The unit is considered balanced if the difference between the two airflows is not more than 10 CFM.

NOTE: Install the damper so that it slides from the door of the unit down to the duct collar.

NOTE: Drilling through the case while the unit is running may cause metal shards to be drawn into the unit.

NOTE: Be sure to remove cap from pressure port before inserting tubing. Insure tubing is well seated in pressure ports.

NOTE: The tubing should extend in the pressure port approx. 1”.

NOTE: These ports are carefully located on the unit to give the most accurate airflow measurement.

NOTE: Be sure to replace cap into pressure port when airflow measuring is completed.
MAINTENANCE

EV130, EV200, EV240, and EV300

NOTE: For best performance the airflow rate for both the Fresh Air and the Exhaust Air should be roughly equal (“balanced”). In some facilities a slight positive or negative pressure in the building is desired. RenewAire ERVs can generally operate with a flow imbalance of up to 20% without significant loss in energy recovery efficiency.

CAUTION

The proper airflow range for the models are:
- **EV130**: 50–140 CFM
- **EV200**: 100–200 CFM
- **EV240**: 100–240 CFM
- **EV300**: 150–300 CFM

WARNING

Risk of Fire, Electric Shock, or Injury.
- Before servicing or cleaning the unit, unplug the line cord.
- Make sure unit is not running before opening its door. Blower wheels are sharp and can cut.
- Do not disable the interlock switch: it is there for your safety.

CAUTION

DO NOT WASH THE ENERGY EXCHANGE CORE.
Keep it away from water or fire to avoid damaging it. Always handle the core carefully.

FIGURE 4.4.0 AIRFLOW DIAGRAM EV130, EV200, EV240, EV300

<table>
<thead>
<tr>
<th>Pressure Ports</th>
<th>OA</th>
<th>RA</th>
<th>EA</th>
<th>FA</th>
</tr>
</thead>
</table>

DIFFERENTIAL STATIC ACROSS CORE DSP VS. CFM

<table>
<thead>
<tr>
<th></th>
<th>EV130</th>
<th>EV200/240/300</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP 0.10</td>
<td>Fresh Air (FA)</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Room Air (RA)</td>
<td>28</td>
</tr>
<tr>
<td>DSP 0.20</td>
<td>Fresh Air (FA)</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Room Air (RA)</td>
<td>57</td>
</tr>
<tr>
<td>DSP 0.30</td>
<td>Fresh Air (FA)</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Room Air (RA)</td>
<td>85</td>
</tr>
<tr>
<td>DSP 0.40</td>
<td>Fresh Air (FA)</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Room Air (RA)</td>
<td>113</td>
</tr>
<tr>
<td>DSP 0.50</td>
<td>Fresh Air (FA)</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>Room Air (RA)</td>
<td>142</td>
</tr>
<tr>
<td>DSP 0.60</td>
<td>Fresh Air (FA)</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>Room Air (RA)</td>
<td>142</td>
</tr>
</tbody>
</table>

5.0 MAINTENANCE

Keep your ERV performing at its best by cleaning it as described below.

5.1 TO CLEAN THE ENERGY EXCHANGE ELEMENT

1. Remove the filters (see below).
2. Vacuum the exposed faces of the energy exchange core with a soft brush attachment.
3. After servicing the filters, re-install them (see below).
4. Vacuum out dust from the rest of the unit case. Dust collects only on the entering faces of the energy exchange core. The interior of the energy exchange core stays clean even if the core faces are dust covered. The core flutes move the air in a laminar airflow such that particulate deposition is maintained at virtually nil.

5.2 INSPECT AND CHANGE THE FILTERS REGULARLY

Service filters every three months when the unit is in regular use or as needed to keep them reasonably clean.

1. Release cam latches and carefully swing access door open. Remove the door by sliding to one side.
2. Remove filter clips.
3. Pull the filters out.
4. Vacuum with a hose attachment.
5. Re-install filters and filter clips, see Section 5.5 Service Parts. Orange side of filter should face the core.
6. Re-install door, and fasten cam latches.

The primary contact for replacement filters for your RenewAire unit is the installing contractor. As an alternative, you may wish to produce your own filters. Please follow these instructions:
Filters may be cut from a sheet or roll of \(\frac{3}{4}'' - 1'' \) firm, spun polyester filter “hog hair” media or material, similar to the existing filter in the residential unit. The size of each filter (2 required per unit) is as follows:

- **EV130**: 10 ½" x 10 ½"
- **EV200/EV240/EV300**: 10 ½" x 21 ¾"

Call your HVAC contractor or RenewAire for further information.

5.3 MOTOR MAINTENANCE

The blower/motor package needs no lubrication:

Vacuum clean the blower wheels at the same time you clean the face of the energy exchange core. Confirm blower wheel is not rubbing against the blower inlet or housing by rotating wheel manually.

5.4 GENERAL CLEANING AND INSPECTION

Perform general cleaning and visual inspection when changing filters.

1. Remove paper, leaves, etc. from inlet and outlet screens.
2. Inspect for insect nests.

5.5 SERVICE PARTS
About RenewAire

For over 30 years, RenewAire has been a pioneer in enhancing indoor air quality (IAQ) in commercial and residential buildings of every size. This is achieved while maximizing sustainability through our fifth-generation, static-plate, enthalpic-core Energy Recovery Ventilators (ERVs) that optimize energy efficiency, lower capital costs via load reduction and decrease operational expenses by minimizing equipment needs, resulting in significant energy savings. Our ERVs are competitively priced, simple to install, easy to use and maintain and have a quick payback. They also enjoy the industry’s best warranty with the lowest claims due to long-term reliability derived from innovative design practices, expert workmanship and Quick Response Manufacturing (QRM).

As the pioneer of static-plate core technology in North America, RenewAire is the largest ERV producer in the USA. We’re committed to sustainable manufacturing and lessening our environmental footprint, and to that end our Waunakee, WI plant is 100% powered by wind turbines. The facility is also one of the few buildings worldwide to be LEED and Green Globes certified, as well as having achieved ENERGY STAR Building status. In 2010, RenewAire joined the Soler & Palau (S&P) Ventilation Group in order to provide direct access to the latest in energy-efficient air-moving technologies. For more information, visit: renewaire.com